Neuralgia is pain in one or more nerves that occurs without stimulation of pain receptor (nociceptor) cells. Neuralgia is produced by a change in neurological structure or function rather than by the excitation of pain receptors that causes nociceptive pain. Neuralgia falls into two categories: central neuralgia and peripheral neuralgia. This unusual pain is thought to be linked to four possible mechanisms: ion gate malfunctions; the nerve becomes mechanically sensitive and creates an ectopic signal; cross signals between large and small fibers; and malfunction due to damage in the central processor.
Diagnosis
Diagnosis of neuralgia is difficult, and misdiagnosis is common. Diagnosis typically involves locating the damaged nerve by stimulation of the specific damaged pathway or by identifying missing sensory function. The most common test for neuralgia is a nerve conduction study, such as using microneurography in which the peripheral nerve is stimulated and recordings are taken from a purely-sensory portion of the nerve.
When assessing neuralgia to find the underlying mechanism, a history of the pain, description of pain, clinical examination, and experimental examination are required. Since pain is subjective to the patient, it is important to use a pain assessment scale, such as the McGill Pain Questionnaire. Qualifying the severity of the pain is essential in diagnosis and in evaluating the effectiveness of the treatment. Clinical examinations usually involve testing responses to stimuli such as touch, temperature, and vibration. Neuralgia can be further classified by the type of stimuli that elicits a response: mechanical, thermal, or chemical. Response to the course of treatment is the final tool used to determine the mechanism of the pain. Future research must focus on the relationships between all of these categories.
Treatment
Treatment options include medicines, surgery, and complementary approaches.
High doses of anticonvulsant medicines-used to block nerve firing- and tricyclic antidepressants are generally effective in treating neuralgia. If medication fails to relieve pain or produces intolerable side effects, surgical treatment may be recommended.
Neural augmentative surgeries are used to stimulate the affected nerve. By stimulating the nerve the brain can be �fooled� into thinking it is receiving normal input. Electrodes are carefully placed in the dorsal root and subcutaneous nerve stimulation is used to stimulate the targeted nerve pathway. A technician can create different electrical distributions in the nerve to optimize the efficiency, and a patient controls the stimulation by passing a magnet over the unit.
Some degree of facial numbness is expected after most of these surgical procedures, and neuralgia might return despite the procedure�s initial success. Depending on the procedure, other surgical risks include hearing loss, balance problems, infection, and stroke. These surgeries include rhizotomy (where select nerve fibers are destroyed to block pain) and Microvascular decompression (where the surgeon moves the vessels that are compressing the nerve away from it and places a soft cushion between the nerve and the vessels).
Some patients choose to manage neuralgia using complementary techniques, usually in combination with drug treatment. These therapies offer varying degrees of success. Options include osteopathy, massage, chiropractic, acupuncture, biofeedback, vitamin therapy, nutritional therapy, hot-cold compress, and electrical stimulation of the nerves.